ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331
HÜDAVERDİ TOZAN **S**PRING 2013

lecture SIX

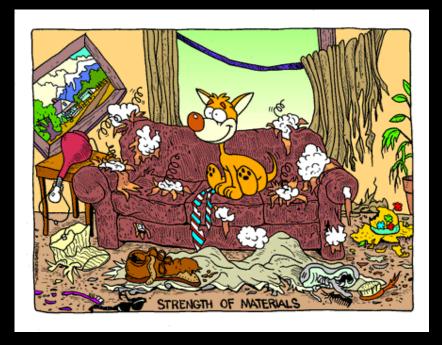
www.carttalk.com

NEAR EAST UNIVERSITY

mechanics of materials

Mechanics of Materials

• MECHANICS

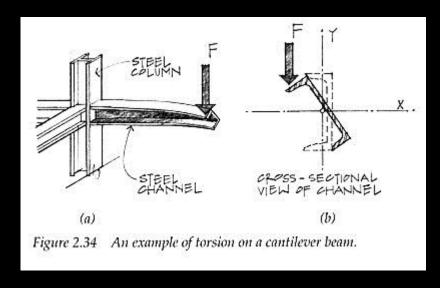


Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
 - stability and equilibrium
 - strength and stiffness
- other principle building requirements
 - economy, functionality and aesthetics

Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
 - deflection
 - deformation



Problem Solving

1. STATICS:

equilibrium of external forces, internal forces, stresses

2. GEOMETRY:

cross section properties, deformations and conditions of geometric fit, <u>strains</u>

3. MATERIAL PROPERTIES:

<u>stress-strain relationship</u> for each material obtained from testing

Stress

- stress is a term for the <u>intensity</u> of a force, like a pressure
- internal <u>or</u> applied
- force per unit area

$$stress = f = \frac{P}{A}$$

Design

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

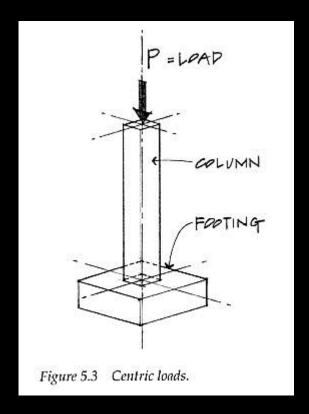
acceptance vs. failure

Design (cont)

we'd like

$$f_{actual} << F_{allowable}$$

- stress distribution may vary: <u>average</u>
- uniform distribution exists IF the member is loaded axially (concentric)



Scale Effect

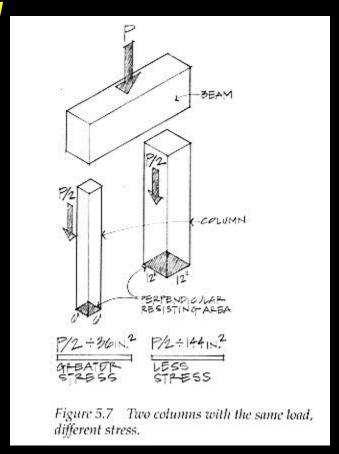
- model scale
 - material weights by volume,
 small section areas
- structural scale
 - much more material weight,
 bigger section areas
- scale for strength is not proportional: $_{V\!L^3}$

Normal Stress (direct)

- normal stress is normal to the cross section
 - stressed area is perpendicular to the load

$$f_{torc} = \frac{P}{A}$$

$$(\sigma)$$



Shear Stress

stress parallel to a surface

$$f_{v} = \frac{P}{A} = \frac{P}{td}$$

$$(\tau_{ave}) A td$$

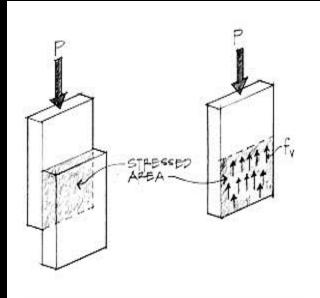


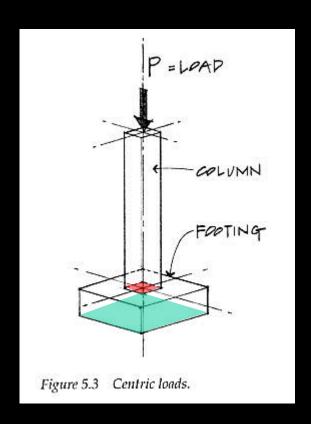
Figure 5.10 Shear stress between two glued blocks.

Bearing Stress

 stress on a surface by contact in compression

$$f_{p} = \frac{P}{A} = \frac{P}{td}$$

$$(\sigma)$$

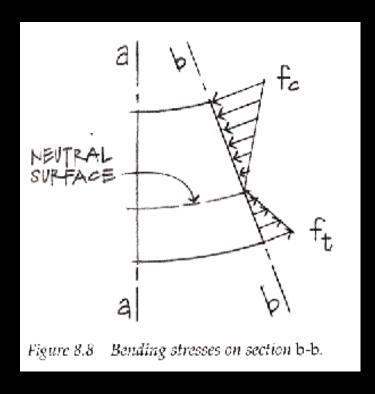


Bending Stress

normal stress caused by bending

$$f_b = \frac{Mc}{I} = \frac{M}{S}$$

$$(\sigma)$$

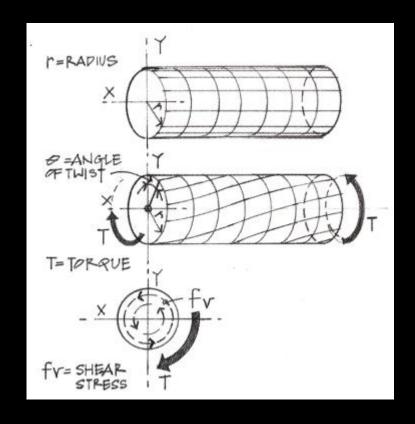


Torsional Stress

shear stress caused by twisting

$$f_{v} = \frac{T\rho}{J}$$

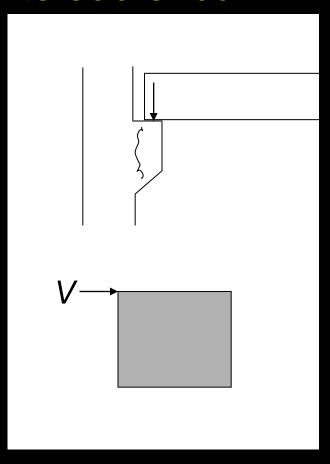
$$(\tau)$$



Structures and Shear

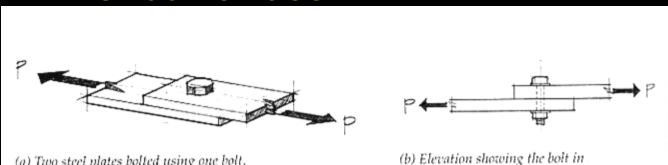
what structural elements see shear?

- beamsconnections
- splices
- slabs
- footings
- walls
 - wind
 - seismic loads



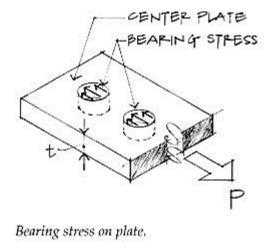
Bolts

connected members in tension cause shear stress



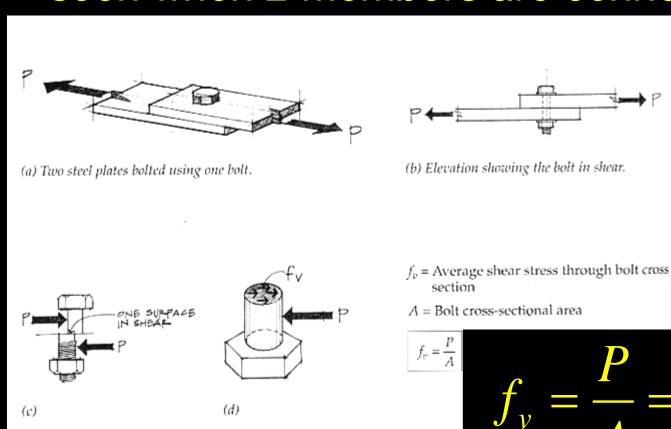
(a) Two steel plates bolted using one bolt.

connected members in compression cause bearing stress



Single Shear

seen when 2 members are connected



A bolted connection—single shear.

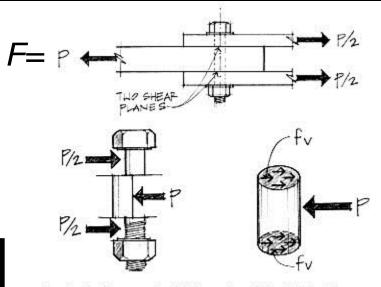
Double Shear

- seen when 3 members are connected
- two areas

$$f_v = \frac{P}{2A}$$

(two shear planes)

$$f_{V} = \frac{P}{2A} = \frac{P/2}{A} = \frac{P/2}{\pi \frac{d^{2}/4}{2}}$$

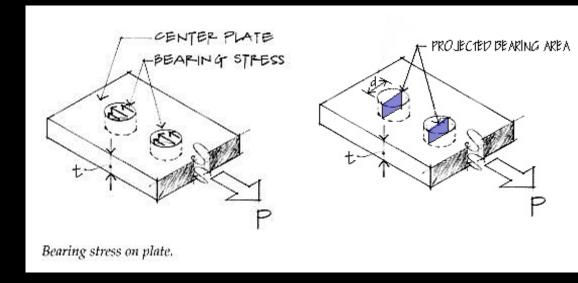


Free-body diagram of middle section of the bolt in shear.

Figure 5.12 A bolted connection in double shear.

Bolt Bearing Stress

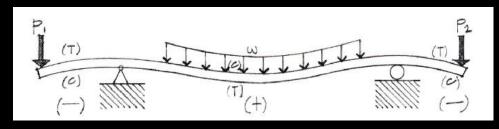
- compression & contact
- projected area

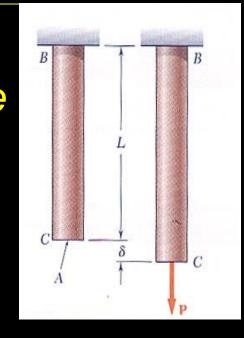


$$f_p = \frac{P}{A_{projected}} = \frac{P}{td}$$

Strain

- materials deform
- axially loaded materials change length
- bending materials deflect



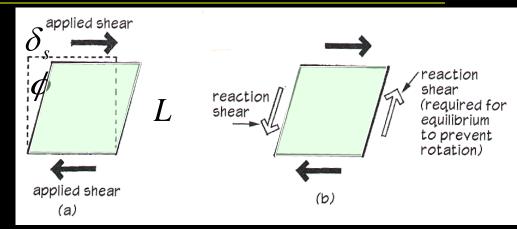


- STRAIN:
 - change in length $strain = \varepsilon =$ over length + UNITLESS

 $=\frac{\Delta L}{L}$

Shearing Strain

- deformations with shear
- parallelogram
- change in angles
- stress: 7
- strain: γ
 - unitless (radians)



$$\gamma = \frac{\delta_s}{L} = \tan \phi \cong \phi$$

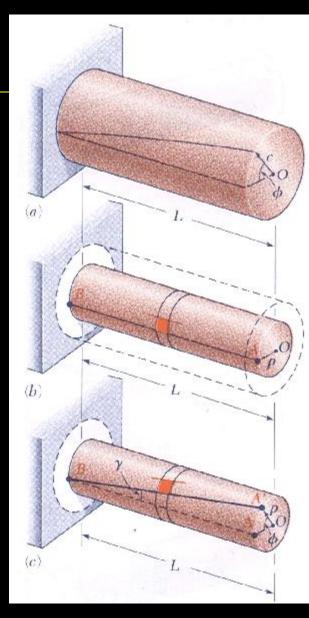
Shearing Strain

- deformations with torsion
- twist
- change in angle of line

• stress:
$$au$$

strain: γ

unitless (radians)

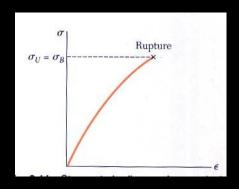


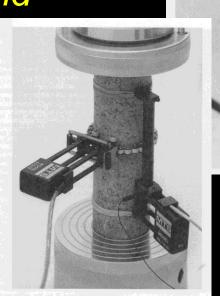
Load and Deformation

- for stress, need P & A
- for strain, need δ & L
 - how?
 - TEST with load and

measure

– plot P/A vs. ε





Material Behavior

- every material has its own response
 - 10,000 psi
 - -L = 10 in
 - Douglas Fir vs. steel?

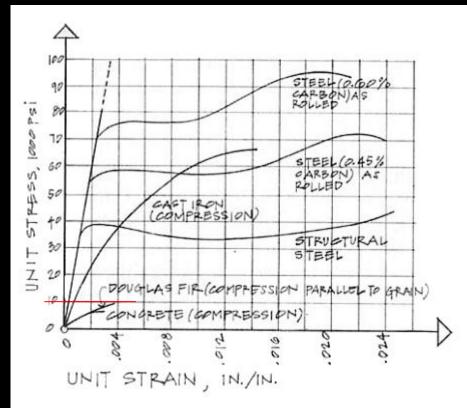


Figure 5.20 Stress-strain diagram for various materials.

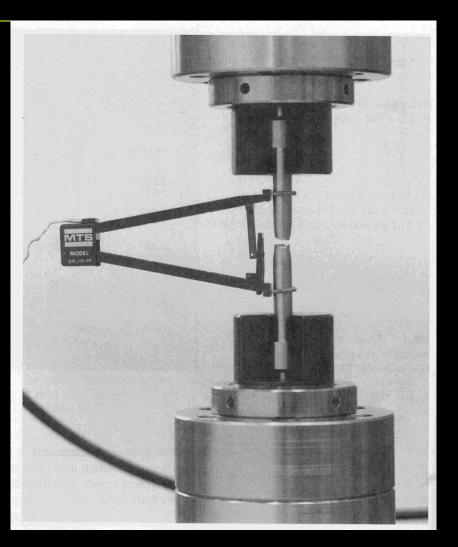
Behavior Types

- ductile "necking"
- true stress

$$f = \frac{P}{A}$$

engineering stress

$$f = \frac{P}{A_o}$$



Behavior Types

brittle

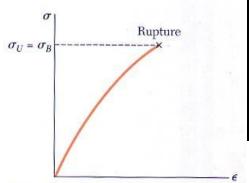


Fig. 2.11 Stress-strain diagram for a typical brittle material.

• semi-brittle

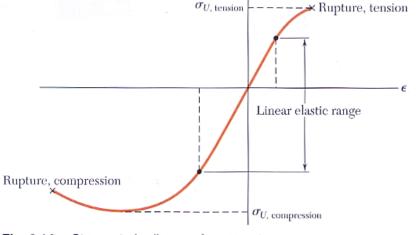


Fig. 2.14 Stress-strain diagram for concrete.

Stress to Strain

• important to us in f- ε diagrams:

- straight section
- LINEAR-ELASTIC
- recovers shape (no permanent deformation)

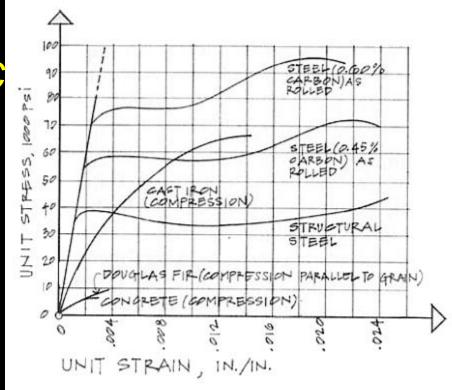
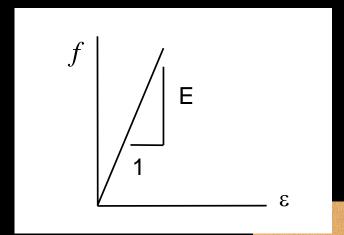


Figure 5.20 Stress-strain diagram for various materials.

Hooke's Law

- straight line has constant slope
- Hooke's Law

$$f = E \cdot \varepsilon$$



- E
 - Modulus of elasticity
 - Young's modulus
 - units just like stress

Stiffness

ability to resist strain

- steels
 - same E
 - differentyield points
 - differentultimate strength

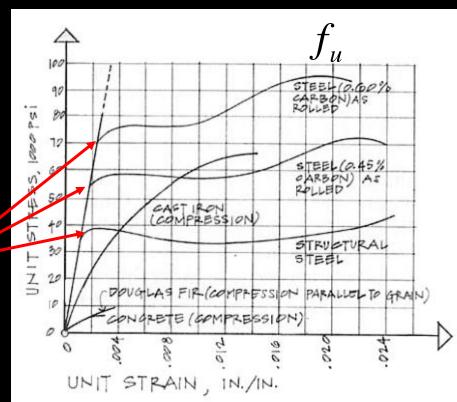


Figure 5.20 Stress-strain diagram for various materials.

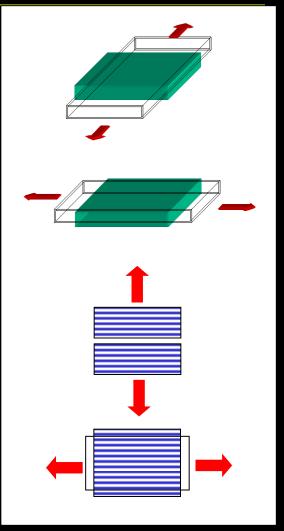
Isotropy & Anisotropy

ISOTROPIC

- materials with E same at any direction of loading
- ex. steel

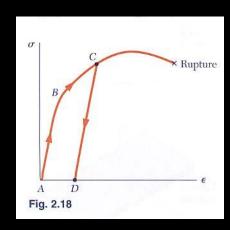
ANISOTROPIC

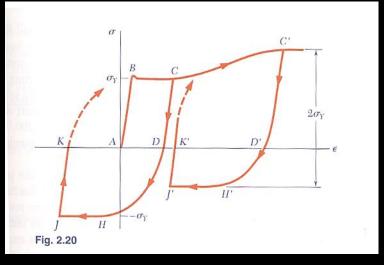
- materials with different E
 at any direction of loading
- ex. wood is orthotropic



Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles





Plastic Behavior

ductile

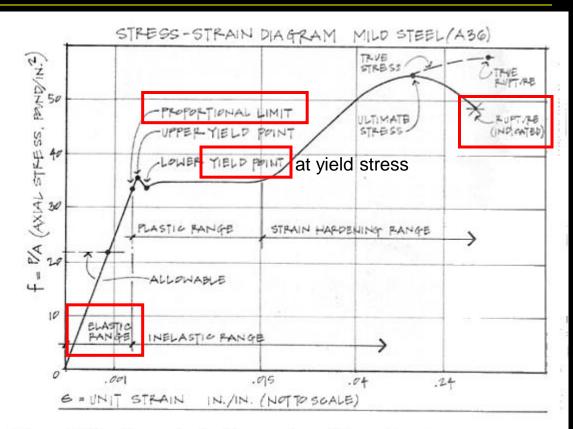


Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

Lateral Strain

or "what happens to the cross section

with axial stress"

$$\varepsilon_{x} = \frac{f_{x}}{E}$$

$$f_{y} = f_{z} = 0$$

- negative
- equal for isometric materials

$$\boldsymbol{\varepsilon}_{\mathrm{y}} = \boldsymbol{\varepsilon}_{\mathrm{z}}$$

Poisson's Ratio

 constant relationship between longitudinal strain and lateral strain

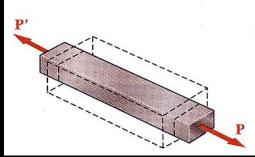
$$\mu = -\frac{lateral\ strain}{axial\ strain} = -\frac{\varepsilon_{y}}{\varepsilon_{x}} = -\frac{\varepsilon_{z}}{\varepsilon_{x}}$$

$$\varepsilon_{y} = \varepsilon_{z} = -\frac{\mu f_{x}}{E}$$

$$\varepsilon_{y} = \varepsilon_{z} = -\frac{\mu f_{x}}{E}$$

sign!

$$0 < \mu < 0.5$$



Calculating Strain

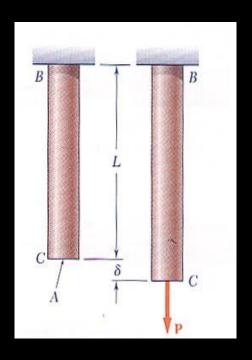
from Hooke's law

$$f = E \cdot \varepsilon$$

substitute

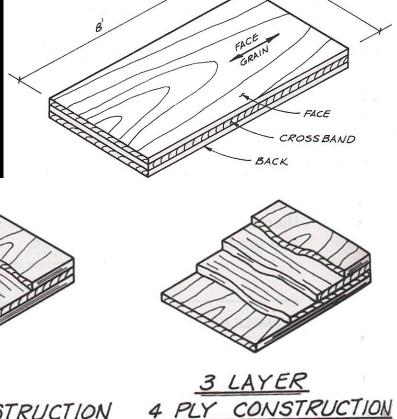
$$\frac{P}{A} = E \cdot \frac{\delta}{L}$$

•
$$get \Rightarrow \delta = \frac{1}{\Lambda} \frac{L}{E}$$



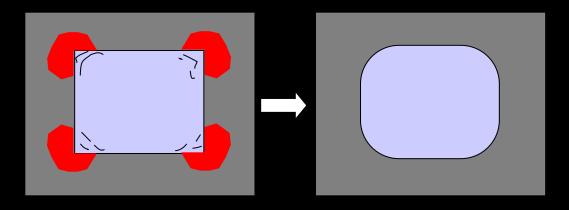
Orthotropic Materials

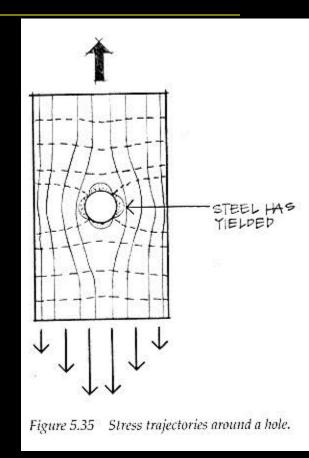
- non-isometric
- directional values of E and μ
- ex:
 - plywood
 - laminates
 - polymercomposites



Stress Concentrations

- why we use f_{ave}
- increase in stress at changes in geometry
 - sharp notches
 - holes
 - corners





Maximum Stresses

• if we need to know where max f and f_v happen:

$$\frac{\sigma_{x}}{2} \qquad \frac{\sigma_{x}}{2}$$

$$\frac{\sigma_{x}}{2} \qquad \frac{\sigma_{x}}{2}$$

$$\theta = 45^{\circ}$$

$$A \qquad B \qquad \frac{\sigma_{x}}{2} \qquad \frac{\sigma_{x}}{2}$$

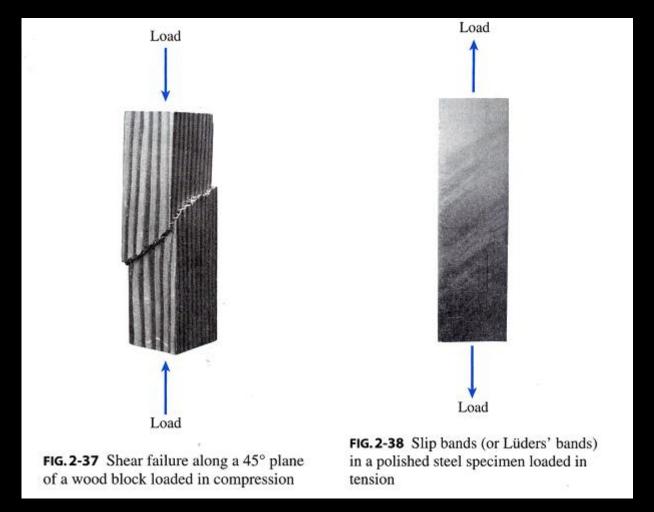
$$\theta = 0^{\circ} \to \cos \theta = 1$$

$$f_{\text{max}} = \frac{P}{A_o}$$

$$\theta = 45^{\circ} \rightarrow \cos \theta = \sin \theta = \sqrt{0.5}$$

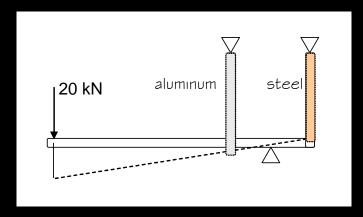
$$f_{v-\text{max}} = \frac{P}{2A_o} = \frac{f_{\text{max}}}{2}$$

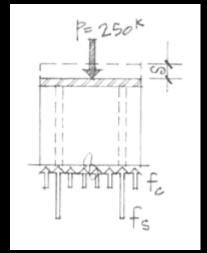
Maximum Stresses



Deformation Relationships

- physical movement
 - axially (same or zero)
 - rotations from axial changes





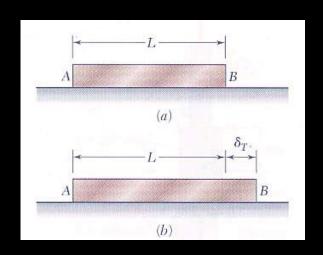
$$\delta = \frac{PL}{AE}$$

relates δ to P

Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials

- can contract with decrease in temperature
- can expand with increase in temperature
- linear change can be measured per degree



Thermal Deformation

• α - the rate of strain per degree

• length change:

$$\delta_T = \alpha (\Delta T) L$$

thermal strain:

$$\varepsilon_T = \alpha(\Delta T)$$

no stress when movement allowed

Coefficients of Thermal Expansion

Material	Coefficients ((lpha) [in.,	/in./°F]
----------	----------------	--------------	----------

 3.0×10^{-6} Wood

4.4 x 10⁻⁶ Glass

5.5 x 10⁻⁶ Concrete

5.9 x 10⁻⁶ Cast Iron

6.5 x 10⁻⁶ Steel

 6.7×10^{-6} Wrought Iron

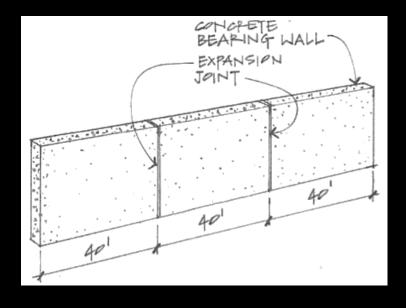
 9.3×10^{-6} Copper

10.1 x 10-6 **Bronze**

10.4 x 10-6 Brass

Aluminum 12.8 x 10⁻⁶

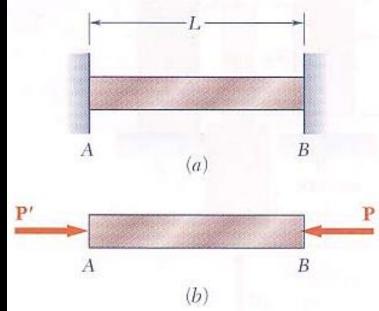
> Architecturai Structures **ARCH 331**



iviecinanics of iviateriais 1 Lecture 6

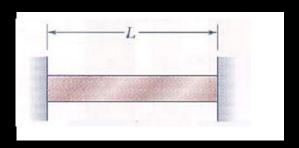
Stresses and Thermal Strains

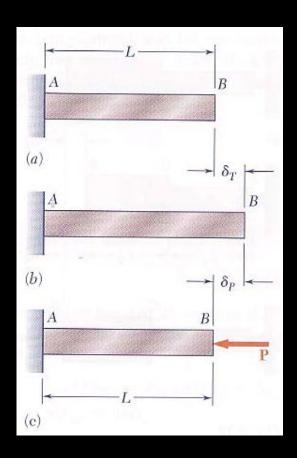
- if thermal movement is restrained stresses are induced
- 1. bar pushes on supports
- 2. support pushes back
- 3. reaction causes internal stress $_{\mathcal{L}}$ P δ $_{\mathcal{L}}$



Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint





Superposition Method

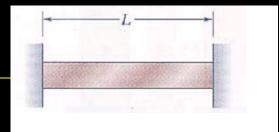
 total length change restrained to zero

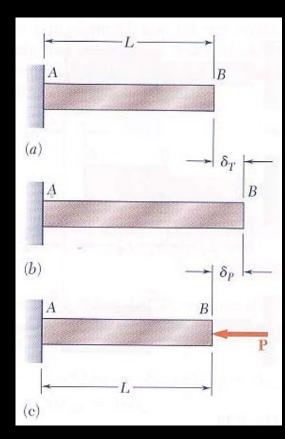
constraint:
$$\delta_P + \delta_T = 0$$

$$\delta_p = -\frac{PL}{AE}$$
 $\delta_T = \alpha (\Delta T)L$

sub:
$$-\frac{PL}{AE} + \alpha (\Delta T)L = 0$$

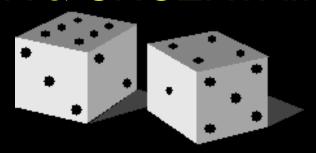
$$f = -\frac{P}{A} = -\alpha (\Delta T)E$$





Design of Members

- beyond allowable stress...
- materials aren't uniform 100% of the time
 - ultimate strength or capacity to failure may be different and some strengths hard to test for
- RISK & UNCERTAINTY



$$f_u = \frac{P_u}{A}$$

Factor of Safety

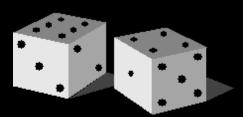
accommodate uncertainty with a safety factor:
 allowable load = ultimate load

• with linear relation between load and stress:

$$F.S = \frac{\textit{ultimate load}}{\textit{allowable load}} = \frac{\textit{ultimate stress}}{\textit{allowable stress}}$$

Load and Resistance Factor Design

- loads on structures are
 - not constant



- can be more influential on failure
- happen more or less often
- UNCERTAINTY

$$R_u = \gamma_D R_D + \gamma_L R_L \le \phi R_n$$

 ϕ - resistance factor

 γ - load factor for (D)ead & (L)ive load